

DISCOVERY POTENTIAL THROUGH SEARCHES

FOR THE CDF AND DØ COLLABORATIONS

Beate Heinemann
University of Liverpool
P5 meeting, Fermilab, 09/12/2005

CDF AND DØ DETECTORS

- Multi-purpose detectors:
 - Calorimeter coverage up to $|\eta|$ <3
 - Full tracking coverage up to $|\eta|$ <1, limited up to $|\eta|$ <2.5
 - Identify electrons/photons, muons, tau's, jets
 - precision vertexing and tracking, b-tagging
 - High performance DAQ and trigger systems
- Have analysed about 300–600 pb⁻¹
 - data taken until September 2004-March 2005

THERE ARE MANY OPEN QUESTIONS...

- What is the origin of mass?
- Are there 3 generations? And if so, why?
- Why is there such a large mass hierarchy?
 - Within fermion sector
 - Between EWK and Planck scale
- What is cold dark matter?
- Is there a common single force?
- Are the fermions and bosons point-like? Or do they have substructure?
- Where has all the anti-matter gone?

...AND ABOUT AS MANY MODELS!

- Supersymmetry
 - mSUGRA, GMSB, AMSB, R-parity violated or not,...
- Extended gauge theories
- Little Higgs
- Technicolor, topcolor
- Compositeness: excited fermions, preons
- Extra dimensions (ADD, Randall-Sundrum)
- ...
- All of which predict new particles to be discovered
- None of which may be true

SELECTED A FEW ANALYSES

- Chosen the following topics because particularly well motivated theoretically:
 - Standard Model Higgs Boson
 - SUSY:
 - Higgs bosons
 - Charginos/neutralinos +squarks/gluinos
 - Rare decays
- But remember, we are experimentalists!
 - So, we keep an open eye as much as we can
 - We may find the unexpected which would be most exciting for our field

STANDARD MODEL HIGGS BOSON

- Only Standard Model particle not seen as yet:
 - understanding of electroweak symmetry breaking
- Precision data prefer light SM Higgs: MHiggs = 91+45-32 GeV
- SUSY (MSSM) requires m_h<136 GeV/c²
- Studies in 1999 and 2003 predicted Tevatron reach:
 - 1.5–2.5 fb⁻¹: 95%CL exclusion at $m_H = 115 \text{ GeV/c}^2$
 - •3-5 fb⁻¹ : 3σ evidence at m_H =115 GeV/ c^2

SOME RECENT RESULTS BY CDF AND DØ

- Low Mass, $m_H < 140 \text{ GeV/c}^2$:
 - -dominant decay into bb (~90%)
 - -Search for peak in bb mass spectrum
- •High mass, m_H>140 GeV/c²:
 - **-Dominant decay into WW (∼90%)**
 - -Examine angular distributions of leptons

CURRENT HIGGS SEARCH RESULTS

- Current results from DØ and CDF:
 - WH->I√bb, ZH->√√bb
 - WW-> $|\mathbf{i}_{\nabla V}$, WWW-> $|\mathbf{i}_{\mathbf{i}}|^{\pm}$ + X
- Combination of current CDF analyses (L=300 pb⁻¹):
 - upper limit 20 times larger than SM prediction at 115 GeV/c²
 - Will gain
 - factor /2 from combination of CDF and D0
 - factor $\sqrt{(L/300 \text{ pb}^{-1})}$ with increasing luminosity
 - factor 5 missing with L=2 fb⁻¹
- Are the 1999 and 2003 studies credible given the current performance?

Can we close the gap?

CAN WE CLOSE THE GAP?

- Assume current analyses as starting point
 - Scale current systematic uncertainties by 1//L
- Reevaluated all improvements using latest knowledge

	Luminosity equivalent=(S/\slant{B})^2		
Improvement	WH->lvbb	ZH->vvbb	ZH->IIbb
mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	1.5	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	1.0	1.6
Track-only leptons	1.4	1.0	1.6
NN selection	1.75	1.75	1.0
WH signal in ZH	1.0	2.7	1.0
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4

See talks by G. Blazey and Y.-K. Kim

Expect factor ~10 improvements and CDF+DØ combination:

=> Need 2.5 fb⁻¹ for 95%C.L. exclusion of 115 GeV Higgs

NEURAL NET SELECTION

- Neural Net:
 - NN analysis done for ZH→IIbb
 - 16 input variables
- Improves S/\/B by factor 1.44
 - Mass cut: 100±20 GeV:
 - Signal ε =53.7%
 - Background ε = 15.8%
 - NN cut >0.6
 - Signal **E=77.5%**
 - **Background** ε=15.4%
 - Equivalent lumi=(S/√B)²=2
- 1.75 from 2003 HSWG study is achievable:
 - Even gained factor 4 in (S/JB)² in single top NN analysis!
 - see talk by J. Hobbs

HIGGS AT TEVATRON: CONCLUSIONS

based on pre-Run 2 analyses

- Confirmed previous studies with run 2 data experience
 - Syst. uncertainties increase required luminosity by 40%
- 95% C.L. exclusion:
 - \int Ldt =2-2.5 fb⁻¹: probe LEP excess at m_H=115 GeV/c²
 - $\int Ldt = 4.0 \text{ fb}^{-1}$: up to $m_H = 130 \text{ GeV/c}^2$
 - $\int Ldt = 8.0 \text{ fb}^{-1}$: up to $m_H = 135 \text{ GeV/c}^2$
- **Severely constrains MSSM**

- 3σ evidence: ★
 - \int Ldt ≈5.0 fb⁻¹: for m_H=115 GeV/c²

"GOD DOES NOT PLAY DICE" (WITH THE PHYSICIST)?

- All numbers given so far were
 - a 50% probability of an experiment achieving discovery or exclusion
 - We perform 1 experiment
- Could get statistically lucky or unlucky (m_H=115 GeV/c²):
 - with L=1 fb⁻¹:
 - 5% chance for 3σ evidence
 - 0% chance for 5σ discovery
 - with L=4 fb⁻¹:
 - 35% chance for 3σ evidence
 - 2% chance for 5σ discovery
 - with L=8 fb⁻¹:
 - 75% chance for 3σ evidence
 - 10% chance for 5σ discovery

$$m_{H} = 115 \text{ GeV/c}^{2}$$

SUPERSYMMETRY

- Addresses many questions and problems in SM:
 - Elegant solution to hierarchy problem (m_W<<m_{Pl})
 - Achieves unification of gauge theories at GUT scale
 - Predicts a natural candidate for cold dark matter
 - if R-parity is conserved
- More than 100 parameters:
 - Rich phenomenology => many different signatures
- Experimental status:
 - No evidence found:
 - Stringent direct limits on sleptons and gauginos set by LEP: e.g. $m(\chi^{\pm})>103.5$ GeV/c²
 - Consistent with measurements of $\Omega_{DM}h^2$, $(g-2)_{\mu}$, $b \rightarrow s\gamma$ and electroweak precision data

HIGGS: A→BB AND A→ττ

- Supersymmetry (MSSM):
 - 2 Higgs doublets => 5 Higgs bosons: h, H, A, H[±]
- High tanβ:
 - A degenerate in mass with h or H
 - Cross sections enhanced with $tan^2\beta$ due to enhanced coupling to down-type quarks
 - Decay into either $\tau\tau$ or bb:
 - BR(A $\rightarrow \tau \tau$) \approx 10%, BR(A \rightarrow bb) \approx 90%
 - Exact values depend on SUSY parameter space

Experimentally:

- $pp \rightarrow Ab+X \rightarrow bbb+X$
- pp \rightarrow A+X $\rightarrow \tau\tau$ +X

- •M.Carena, S.Mrenna and C.Wagner, PRD 60, 075010 (1999)
- •M.Carena, S.Mrenna and C.Wagner, PRD 62, 055008 (2000)

MSSM HIGGS: PRESENT AND FUTURE

- First results in Run 2:
 - Probe $tan\beta>50-60$ at low m_A
 - Channels complementary: different sensitivity to radiative corrections
- Will close gap to LEP with increasing datasets
- For tanβ=40≈m_{top}/m_b:
 - L=1fb⁻¹: $m_A < 170 \text{ GeV/c}^2 @95\%CL$
 - L=4 fb⁻¹: m_A <225 GeV/ c^2 @95%CL
 - L=8 fb⁻¹: m_A<240 GeV/c² @95%CL
- Simultaneous analysis of both decay channels will be crucial to know what it is

MSSM HIGGS: EVIDENCE/DISCOVERY?

- Discovery potential
 - L=2 fb⁻¹ vs L=8 fb⁻¹:
 - improves reach by \sim 10 units in tanß

SUSY TRILEPTONS

- "Golden" Trilepton Signature
 - Chargino-neutralino production
 - Low SM backgrounds
- 3 leptons and large Missing E_T:
 - Neutralino χ⁰₁ is LSP
- Recent analysis of electroweak precision and WMAP data (J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein: hep-ph/0411216)
 - Preference for "light SUSY"
 - Chargino mass around 200 GeV/c²
- Current DØ analysis:
 - 2 I (I=e, μ , τ) + isolated track or $\mu^{\pm}\mu^{\pm}$
 - **/**t +topological cuts
 - Analysis most sensitive at low tanß
 - BG expectation: 2.9±0.8 events
 - Observed: 3 events

TRILEPTONS: PRESENT AND FUTURE

- Now: σxBR<0.2-0.3 pb
 - 3I-max scenario:
 - Sleptons light
 - Optimistic mSUGRA
 - Large m_o scenario:
 - Sleptons heavy
 - Pessimistic mSUGRA
 - Current data probe optimistic scenario
- Future:
 - Cross section limit 0.05–0.01 pb
 - L=1 fb⁻¹: probe chargino masses up to 100-170 GeV/c²
 - L=8 fb⁻¹: probe chargino masses up to 150-240 GeV/c²

Preferred by precision data

SQUARKS AND GLUINOS

Search for Missing Et+jets:

- Strong production => Large production cross sections
- Data consistent with SM background
- Currently excluding masses up to 350 GeV for squarks and gluinos

- L=2 fb⁻¹: reach up to 400 GeV
- L=8 fb⁻¹: reach up to 450 GeV
- Could improve with further reoptimisation of cuts
- Not sensitive to stop quarks
 -and they are special

A LIGHT STOP QUARK?

- Stop mass "low" due to large mass and large Yukawa coupling of top quark
- Baryogenesis prefers light stop quark and Higgs boson
 - $m(t) < 165 \text{ GeV/c}^2$
- Several decay channels:
 - $\widetilde{t} \rightarrow \widetilde{\chi}^0 c$
 - $-\widetilde{t} \rightarrow l\widetilde{v}b$
 - $\widetilde{t} \rightarrow \widetilde{\chi}^{\underline{t}}b \rightarrow lvb \text{ or } t \rightarrow \widetilde{\chi}^{0}t \rightarrow \widetilde{\chi}^{0}lvb$
 - Depends on masses of $\widetilde{\chi}^0, \widetilde{\chi}^{\pm}, \widetilde{t}, \widetilde{\nu}$
- Light stop reach :
 - L=1 fb $^{-1}$: m(t)<160 GeV/c²
 - $L=4 fb^{-1}$: m(t)<180 GeV/c²

RARE DECAY: $B_S \rightarrow \mu^+ \mu^-$

SM rate heavily suppressed:

$$BR(B_s \to \mu^+ \mu^-) = (3.5 \pm 0.9) \times 10^{-9}$$
 (Buchalla & Buras, Misiak & Urban)

SUSY rate may be enhanced:

$$B(B_s \to \mu^+ \mu^-) \propto \tan^6 \beta / m_A^4$$

(Babu, Kolda: hep-ph/9909476+ many more)

 Related to Dark Matter cross Section (in one of 3 cosmologically interesting regions)

$$\sigma_{\chi p} \propto \tan^2 \beta / m_A^4$$

 Recently gained a lot of attention when interpreting WMAP data

S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033

RARE DECAY: $B_S \rightarrow \mu^+ \mu^-$

Current limits at 90% C.L.:

- Fierce Competition:
 - 1. CDF (L=171 pb⁻¹): BR < 5.8×10^{-7}
 - 2. DØ (L=240 pb⁻¹): BR < 4.1×10^{-7}
 - 3. DØ (L=300 pb⁻¹): BR < 3.0×10^{-7}
 - 4. CDF (L=364 pb⁻¹): BR < 1.6×10^{-7}
- Friendly combination:
 - 1. CDF+DØ:

- BR < 1.2×10^{-7}
- Projected reach (CDF+DØ):
 - Exclusion at 90% C.L.:
 - L=1 fb⁻¹: BR < 6.4×10^{-8}
 - L=4 fb $^{-1}$: BR < 2.8 x 10 $^{-8}$
 - L=8 fb⁻¹: BR < 2.0 x 10⁻⁸
 - Discovery at 5σ:
 - L=1 fb⁻¹: BR = 2.1×10^{-7}
 - L=4 fb⁻¹: BR = 9.9×10^{-8}
 - L=8 fb⁻¹: BR = 6.7×10^{-8}

(this assumes no improvements to analyses)

IMPACT OF $B_S \rightarrow \mu^+ \mu^-$ Limits: Now

- R. Dermisek, S. Raby, L. Roszkowski,
- R. Ruiz de Austri, hep-ph/0507233

S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033

Starting to constrain MSSM parameter space

IMPACT OF $B_S \rightarrow \mu^+\mu^-$ LIMITS: L=8 FB⁻¹

- R. Dermisek, S. Raby, L. Roszkowski,
- R. Ruiz de Austri, hep-ph/0507233

S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033

- Will severely constrain parameter space
 - "Tevatron can rule out 29% of parameter space allowed by WMAP data within mSUGRA." B. Allanach, C. Lester, hep-ph/0507283

1 VS 4 VS 8 FB⁻¹ WHAT DIFFERENCE DOES IT MAKE?

	\int Ldt = 1 fb ⁻¹	∫ Ldt = 4 fb ⁻¹	∫ Ldt = 8 fb ⁻¹
SM Higgs: 95% C.L. excl.	m _H <100 GeV/c ²	m _H <130 GeV/c ²	m _H <135 GeV/c ²
m _H =115 GeV/c²: 3σ evidence	5% chance	35% chance	75% chance
m_H =115 GeV/ c^2 : 5 σ discovery	0% chance	2% chance	10% chance
MSSM A, tanβ=40: 95%CL excl	m _A <170 GeV	m _A <225 GeV	m _A <240 GeV
MSSM A @140 GeV: 5σ disc.	tanβ= 70	tan β =60	tanβ= 55
3leptons (3l-max): 95%CL excl	m(χ [±]) < 170 GeV	m(χ [±]) < 200 GeV	m(χ [±]) < 230 GeV
3leptons (large m0): 95%CL excl.	m(χ [±]) <100 GeV	m(χ [±]) < 135 GeV	m(χ±) < 150 GeV
Gluinos: 95% C.L. excl.	_	M<420 GeV	M<450 GeV
Stop quarks: 95% C.L. excl.	M(t)<160 GeV	M(t)<180 GeV	M(t)<185 GeV
B _s →μμ : 95% C.L. excl.	BR<6.4 x 10 ⁻⁸	BR<2.8 x 10 ⁻⁸	BR<2.0 x 10 ⁻⁸
B _s →μμ: 5σ discovery	BR=21.0x 10 ⁻⁸	BR=9.9 x 10 ⁻⁸	BR=6.7 x 10 ⁻⁸
Z' discovery, e.g. E6 model	M=720 GeV	M=820 GeV	M=870 GeV
LED: 95% C.L. excl.	M<1.8 TeV	M<2.15 TeV	M<2.35 TeV

HOWEVER ... WE ARE EXPERIMENTALISTS!

AND SO MUCH MORE!!! (E.G. CDF)

Published/Submitted:

- H⁺⁺->ee,μμ,**e**μ
- H**, stable double charged particle
- Excited electrons
- GMSB: $\gamma\gamma$ +ME_T
- LQ->vvqq
- Magnetic monopoles
- MSSM Higgs: A->ττ
- LQ, 1st gen.
- **Z'->ee**, μμ, ττ
- B_s -> $\mu\mu$

• Other (no result yet):

- Photon+ME_T(LED+GMSB)
- Like-sign dileptons
- Dileptons at large q_T
- 4-leptons
- **− Β_s −>**μμφ
- Excited muons and taus
- tt+Higgs
- GMSB Stop: yy+2jet+MEt
- Lepton-flavor violating Higgs
- MSSM Higgs: A+b ->bb+b
- Excited quarks
- Dijet mass resonance
- Syst. Scan of high p_{τ} data

Preliminary results:

- 4th generation quarks: b', t'
- Diphoton resonance
- W'->ev
- SM Higgs
- Charged Higgs
- Vector LQ, 3rd gen.
- LQ, 2nd gen.
- Gluino->sbottom+bottom
- Squark/gluino->jets+ME_T
- Stop: 2 decay modes
- RPV stop quark
- RPV sneutrino
- Trileptons
- monojets
- lepton+gamma+X
- Ditop resonance
- High Et jets
- CHAMPs: CHArged Massive Particles
- Longlived particle decaying to Z+X

Blue: shown here

Black: not shown here

(similar at DØ)

ABOUT 1/6 OF RUN 2 SEARCH RESULTS

CONCLUSIONS

- Discovery potential:
 - Predictions based on Run 2 analysis experience
 - Standard Model Higgs
 - L=2.5 fb⁻¹: Probe LEP excess at m_H=115 GeV/c²
 - L=4-8 fb⁻¹: significant exclusion or evidence
 - Tevatron competitive with LHC until experiments complete analysis of L≈5 fb⁻¹
 - SUSY
 - Discovery potential:
 - Higgs, Trileptons, squarks/gluinos, $B_s \rightarrow \mu^+ \mu^-$
 - Tevatron less competitive with LHC experiments
 How exactly depends on model parameters and type
 - Many other models (Z', Extra Dimensions, etc.)
- We are explorers
 - Model independent searches for signatures
 - Don't know whether any theory is right!
- We may find the unexpected
 - Every 1–2 weeks a "blind box" is opened and an exciting surprise may show up!

BACKUP SLIDES

LHC HIGGS DISCOVERY POTENTIAL

F. Gianotti, LP2005: "the LHC experiments may collect several fb⁻¹ by end of 2008."

- Very fast for high mass, e.g. 160 GeV/c²:
 - L=500 pb⁻¹ in h→WW channel
- Harder at low mass => zoom into low mass region

LHC: Low Mass Region

- m_H=115 GeV/c²
 - Three channels contribute, each with about 2–3σ:
 - H->γγ, ttH->ttbb, qqH->qqττ
- Combining those three channels:
 - Require L \approx 10 fb⁻¹ for 5 σ discovery with single experiment at m_H=115 GeV/c²
- Tevatron results competitive until at least 5 fb⁻¹ have been analysed by both LHC experiments

ANY HINTS IN THE CURRENT DATA?

Not significant but, e.g.

- Gluino candidate event at H_T=660 GeV
- 2σ excess in ditop mass spectrum at 500 GeV
- 1.5 σ excess in Higgs ditau search

Only more data can tell...

Z DISCOVERY REACH

- Z´→e⁺e⁻ with m_{Z´}=1 TeV/c² and SM couplings:
 - LHC (F. Gianotti, M. Mangano, hep-ph/0504221):
 - 5σ discovery with ∫Ldt=70 pb⁻¹
 - Tevatron:
 - 95% CL exclusion with ∫Ldt=1 fb⁻¹
 - 3σ discovery with ∫Ldt=1.3 fb⁻¹
 - 5σ discovery with ∫Ldt=1.5 fb⁻¹

LHC projections (from M. Mangano)

Z' → ee, SSM

Mass	Expected events for 10 fb ⁻¹	IL dt needed for discovery	
	(after all cuts)	(corresponds to 10 observed evts)	
1 TeV	~ 1600	~ 70 pb ⁻¹	
1.5 TeV	~ 300	~ 300 pb ⁻¹	
2 TeV	~ 70	~ 1.5 fb ⁻¹	

Z DISCOVERY

 Several models inspired by E6 theories

HIGGS: SYSTEMATIC UNCERTAINTIES

5σ discovery 3σ evidence 95% CL exclusion

- Width of bands shows difference between:
 - Assume current systematic uncertainties improve with 1/JL
 - No systematic uncertainties
 - Factor 1.4 difference in luminosity between those assumptions
- Main systematic uncertainties determined by data statistics, e.g.:
 - Wbb and Wc background normalisation (currently 40%)
 - mistags

WH SIGNAL IN ZH-YVBB ANALYSIS

- This is easy!
 - Got factor 2.1 with current analysis (CDF):
 - S/\/B increases: 0.062 => 0.091
 - Luminosity factor=(S/√B)²=2.1
 - DØ observe factor 1.6
- Remarks:
 - ZH→vvbb analysis:
 - vetoes against isolated tracks, electron and muons
 - Exact factor depends on veto cuts
 - Cross-talk with lepton and track-only selections
 - being further optimised with global view on all analyses
- Assume factor 2.7 with optimal lepton selection/vetoes

	CDF	DØ
ZH signal	0.13	0.065
WH signal	0.06	0.018
Background	4.4	2.2
S(ZH)/√B	0.062	0.043
S(ZH+WH)/√B	0.091	0.055

HIGGS: MASS RESOLUTION

- Current value:
 - CDF 17%, DØ 14%
- HSWG result: 10.4%
- How do we get there?
 - Combine track and calorimeter information:2%
 - Expand cone size (CDF): 2%
 - Specific corrections for bjets: 1-2%
 - Fancy algorithms ("hyperball"): 1-2%
- 1% in mass corresponds to 10% in luminosity

HIGGS: NN B-TAGGING

- Neural Net b-tagging
 - first versions available in both experiments
 - DØ achieve 25% improvement now by cutting on NN output
 - Exploit full distribution:
 - better statistical power
 - Best events count most
 - e.g. Factor 1.2
 - simply combining single and double tag samples
- Factor 1.5 is likely achievable

HIGGS: LEPTON SELECTION

- Forward leptons:
 - Assume gain of factor 1.3
 - Current analyses use only up to $|\eta|$ <1.1
- Available improvements:
 - CDF:
 - Forward electrons used already by other analyses, e.g. W charge asymmetry
 - Up to |η|<2.8
 - Central electrons and muons: recently improved efficiency by ~5%
 - Factor 1.34 in acceptance
 - D0:
 - Estimate 50% gain from trigger, lepton ID and using electrons near cracks

IMPROVEMENT 5: TRACK LEPTON

- Track leptons: 1.4
 - Catch one-prong tau-decay
 - Catch region with poor muon/calorimeter instrumentation
 - Depends on how well we identify electrons and muons
 - CDF already uses them in top dilepton selection:
 - Signal: 17.2->21.7 events
 - 25% signal increase
- Can also do full tau ID:
 - See later MSSM higgs search
 - Tau ID:
 - Cut based: ε≈45%
 - NN based: ε≈ 80%
 - Not yet evaluated potential

WH→evbb IN DØ

• Improvements:

Forward leptons: 26%

B-tagging: 40%

- Trigger+ID: 30%

- Mass resolution: 40%

Tota	•
IOla	

- Factor 1.85 in S/√B
- Luminosity equivalent: 3.4

	now	future(*)
Mass resolution	14%	10%
Signal	0.12	0.48
Background	2.37	5.79
S/\/B	0.08	0.20

(*) 2003 HSWG study without NN assumption, scaled to L=382 pb⁻¹

DOES THE NN CREATE A MASS BIAS?

- WH NN from Run I:
 - Avoids using variables correlated with mass
 - Expected limit improved from 13 pb to 10 pb => luminosity equivalent is $(13/10)^2=1.7$
- Background shape not biased towards higgs mass
- Better discrimination when mass used in NN (~2)
 - But will we believe the pure NN output?
 - Can test this with other channels, e.g. WW->jjlv

HOW DOES THE HIGGS SIGNAL LOOK LIKE?

• Will first observe WZ:

- excellent calibration channel
- tests validity of procedure

LHC: HIGGS AT 115 GEV/C²

LHC: HIGGS AT 115 GEV/C²

Remarks:

from F. Gianotti, LP 2005

Each channel contributes ~ 2σ to total significance \rightarrow observation of all channels important to extract convincing signal in first year(s)

The 3 channels are complementary \rightarrow robustness:

- · different production and decay modes
- different backgrounds
- different detector/performance requirements:
 - -- ECAL crucial for $H \rightarrow \gamma\gamma$ (in particular response uniformity): $\sigma/m \sim 1\%$ needed
 - -- b-tagging crucial for ttH: 4 b-tagged jets needed to reduce combinatorics
 - -- efficient jet reconstruction over $|\eta|$ < 5 crucial for qqH \rightarrow qq $\tau\tau$: forward jet tag and central jet veto needed against background

Note: -- all require "low" trigger thresholds

E.g. ttH analysis cuts: $p_T(l) > 20 \text{ GeV}$, $p_T(jets) > 15-30 \text{ GeV}$ -- all require very good understanding (1-10%) of backgrounds

DO: RARE DECAYS

$$B_s \rightarrow \mu\mu$$
 and $B_s \rightarrow \mu\mu\phi$

- Based on DZero results at ~300 fb⁻¹
- Scaled to higher luminosities
- Bands indicate 10% variation of events

SUSY AT THE LHC

- Will generally be found fast!
- But SUSY comes in very many flavours
- Hints from the Tevatron would help on search priorities, e.g.
 - tanβ large:
 - 3rd generation important $(\tau's, b's)$
 - R-parity is violated
 - No E_T
 - GMSB models:
 - Photons important
 - Split-SÚSY:
 - Stable charged hadrons
 - Can setup triggers accordingly

